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ABSTRACT 

NASA researchers have demonstrated that qualitative, model-based reasoning can be 
used for fault detection in a Main Propulsion System (MPS), a complex, continuous system. At 
the heart of this diagnostic system is Livingstone, a discrete, propositional logic-based inference 
engine. Livingstone comprises a language for specifying a discrete model of the system and a 
set of algorithms that use the model to track the system's state. Livingstone uses the model to 
test assumptions about the state of a component - observations from the system are compared 
with values predicted by the model. 

The intent of this paper is to summarize some advantages of Livingstone seen through 
our modeling experience: for instance, flexibility in modeling, speed and maturity. We also 
describe some shortcomings we perceived in the implementation of Livingstone, such as 
modeling continuous dynamics and handling of transients. We list some upcoming 
enhancements to the next version of Livingstone that may resolve some of the current limitations. 

PURPOSE 

This paper is intended to give an overview of some strengths and weaknesses of the 
model-based diagnosis tool Livingstone 2 (E). The authors have seen sufficient interest in L2 to 
make this overview worthwhile. This paper also lists mitigations of L2's weaknesses that have 
been used on the applications project PITEX, and what weaknesses will be addressed in the next 
version of Livingstone, L3. This paper is not intended as a general survey of the model-based 
diagnosis field; different model-based techniques each have their own strengths and 
weaknesses. 

INTRODUCTION 

Livingstone is an inference engine that has been developed at NASA's Ames Research 
Center. It accepts a model of the system, such as a spacecraft, and notes the commands to and 
the observations'from the system. Using these, it can monitor the system and diagnose its 
current state. It does this by comparing behavior predicted from the model with actual 
observations during operation. This approach is called model-based diagnosis. 

papers are in [l]. The precursors to Livingstone are Sherlock and General Diagnostic Engine 
(GDE), which used propositional logic and conflict-directed search. However, they lacked the 
concept of state of the system. The idea of state, and constraints that could identify the current 
and next state, was added in Livingstone. 

Livingstone has been implemented for diagnosis on several systems, such as the liquid 
propulsion feed system for the X-34 [7], the electromechanical actuators on the X-37 [6], hybrid 
combustion rocket engine testbed, advanced life support system testbed, ships' cooling system, 
as well as remote spacecraft and low earth orbit satellites. In its most famous application, 
Livingstone formed the Mode Identification and Recovery component of the Remote Agent 
Experiment that flew on Deep Space 1 in 1999 [3]. It monitored the Attitude Control System of 
DS-1. That version of Livingstone, written in Lisp, was L1. A newer version of Livingstone, in 

Research in model-based diagnosis progressed throughout the 1980s. Several excellent 
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C++, is called L2, and included a new capability of tracking multiple time histories of possible past 
trajectories of a system. 

An L2 model includes discrete modes and mode transitions, discrete variables, and 
constraints between the variables. Internally, L2 uses qualitative propositional theory to represent 
the model using a conjunctive normal form, i.e. a set of clauses. A transition system tracks the 
component modes over time. L2 checks for consistency (tries to make all clauses true to make 
theory consistent) using boolean constraint propagation. If the theory is not consistent with 
nominal transitions, L2 searches the space of fault transitions to make it consistent again. The 
internal algorithms used in L2 are more fully described in [5]. 

Main PI 
i.e.. the 

Propulsion IVHM Technology Experiment (PITEX) [7] uses an L2 model of an X-vehicle's 
*opulsion System (MPS) to perform near real-time diagnosis. The model is compositional, 
nominal and failure modes of the individual components are modeled and a complete 

representation of the system emerges when the components are.connected [8]. This model- 
based approach is in contrast to a rule-based approach, where expected system behavior is 
predefined by a set of rules. 

The overall approach behind L2 is to use a discrete system model in order to achieve a 
computationally fast diagnosis. Many aspects related to working with real-world systems must be 
addressed outside of the engine. The trade-off for this modeling approach is the additional 
development effort required to adapt L2 to continuous, real-world systems. In addition to the 
MPS model and the L2 inference engine, several other key modules, such as monitors and a 
Real-Time Interface (RTI), make up the PITEX architecture as described in [7]. Briefly, the 
monitors convert real-valued, noisy sensor data into discrete values. The RTI is responsible for 
passing the monitor output into the L2 engine, and for requesting L2 to perform diagnoses. 

shortcomings, both in the modeling approach and in the inference engine itself. These findings 
will help guide the design of the next version of Livingstone, L3. 

Our experience in modeling the MPS using L2 is the basis of this paper. We note several 

RESULTS AND DISCUSSION 

PITEX identified several strengths and weaknesses of L2. This may not be an 
exhaustive list? but covers many issues a new user of L2 might encounter. 

STRENGTHS OF L2 

1. 

2. 

3. 

4. 

5. 

6. 

Tracking of system state with history - L2 can be used in monitoring execution of 
commands in nominal and fault cases 

Fault detection, isolation, and recovery - can detect faults and isolate them, 
where possible, to the component level, then recommend recovery actions to be 
taken 

Multiple faults - can diagnose double/triple faults, limited only by user-defined 
settings 

Sensor fusion, unknown sensor values - current state estimate incorporates all 
available sensor data from multiple components, and can reason when 
observations are "unknown" 

Speed - since Livingstone uses discrete representation, it is generally faster than 
continuous-valued methods; one can set the search parameters to better tune 
the processing time 

Automated methods - L2's model representation allows for various automated 
tests to be performed 
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7. Maturity - has been used on several applications projects and runs in flight-like 
environments 

Trackincl of svstem state with history 

A basic capability of Livingstone is the ability to track the state of a system. L2 tracks a 
system's state, whether it be nominal operations or fault modes. The modes and variable values 
within the model are all inferred based on the sequence of commands and the observations. The 
commands and observations are stored in a history, which allows L2 to revise its estimate of the 
state of a system based on later observations. This makes L2 useful as a monitoring system 
even when no faults are present. In the presence of faults it can diagnose which fault is likely to 
have occurred. 

Often engineers are not so much concerned with diagnosing failures as with ensuring 
that the system behaves as desired. However, sometimes systems do not behave as desired, 
even though no hard faults have occurred. Consider the case where a spacecraft component 
spends most of its time in a standby mode, and must be powered on before use. If the 
component is commanded before it is powered on, it won't respond, although no on-board fault 
has occurred. L2 will track the system's state as having remained in the standby mode, and will 
not signal a fault. In other words, L2 tracks the effects of commands, it does not venfy if a 
command sequence itself is correct. 

Fault detection, isolation, and recovery 

Some confusion can exist about the exact capabilities of a tool called a 'diagnosis 
system". These more specific terms are commonly used to resolve that confusion. L2 has all 
three capabilities: it can detect that a fault has occurred, can isolate that fault to specific 
components, and can recommend recovery actions to be taken, if any exist (such as listing the 
commands needed to switch to a backup system). 

Multiple faults 

Many diagnosis systems make a single-fault assumption to decrease the amount of 
computation needed for a diagnosis. Often, this is a reasonable assumption. However, L2 does 
not need this assumption. L2 is capable of returning multiple hypotheses, each possibly 
containing multiple faults, to explain the current set of observations. The hypotheses are ordered 
by likelihood; limits on the number returned and on the likelihood can be set as L2 parameters. 

Sensor fusion, unknown sensor values 

L2 performs a task similar to sensor fusion. The sensor observations across the system 
are compared for consistency with the overall mode of the system. If there is an inconsistency, 
L2 searches for sets of faults that explain all of the observations. 

values. L2 easily handles unavailable sensor values: it will take into account all available 
observations and return the best diagnosis. If a sensor value is stale, that value would need to be 
removed from L2 and thus treated as an unknown value. 

Related to sensor fusion is the robustness of a system to stale or unavailable sensor 

Speed 

This strength of L2 is relative to model-based systems with continuous dynamics. L2 is 
fast enough to be deployable on real-world systems: as was shown on PITEX, when running the 
MPS model (containing 59 components) on flight-like processors, L2 returned a fault diagnosis on 
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the order of 1 second. When the processor was restricted to give only 5% use to L2, most 
diagnoses were still returned in less than 10 seconds. 171 

Two factors go into the speed of a model-based diagnosis system, candidate generation 
and candidate testing. The former refers to the method chosen to produce possible states of the 
system. The latter refers to how these possible states are evaluated to determine if they are in 
fact consistent with the current observations from the system. 

called conflict-directed search. This heuristic uses the conflicts between expected observations 
and the current observations to guide the search for possible faults. In a sense, L2 conducts the 
fault search based on symptoms that something has gone wrong. 

As L2 models are discrete, candidate testing is in general faster than systems based on 
real-valued numbers. Solving a system of constraints over discrete-valued variables can be done 
faster than solving (or numerically integrating) complex differential equations. Of course, the 
speed of candidate testing greatly depends on the size and complexity of the model. As an L2 
model size increases, so does the time required for candidate testing. 

in candidate generation. The speed of candidate testing will depend greatly on the complexity of 
the model. L3 is not expected to be faster than L2, but specific comments on the speed of L3 
cannot be made until it has been used on applications projects. 

For candidate generation, the algorithm in L2 incorporated a novel search heuristic, 

L3 will keep the conflict-directed search heuristic, and thus will maintain L2's advantage 

Automated methods 

The representation of the diagnosis information in a model-based form can be used by 
automated methods in different ways. Two different automated tools have been developed for 
verifying L2 models. First is Livingstone Model Verifier (LMV), which is derived from the Symbolic 
Model Verifier, SMV. LMV can take an L2 model and check it for user-defined diagnosability 
properties, as well as sanity checks [9]. Second is Livingstone Pathfinder (LPF), which runs L2 
both as a simulator and as a diagnosis engine, executing many auto-generated scenarios and 
checking for various error conditions. For more information, see [lo]. 

Maturitv 

Potential users are always interested in the maturity of a software system. As described 
in the introduction, L2 has been used on several real-world applications projects. This has led to 
many bug fixes, as well as meeting many software flight requirements and compiling on several 
operating systems (including VxWorks). L2 also has several support tools built around it, 
including the graphical model development tools Stanley and Oliver 
(http://ic.arc.nasa.gov/projects/mba/projects/L2/doc/index.html). L2 has never been used as a 
critical software system in a mission, but it has been advanced to the "flight experiment" level. 

WEAKNESSES OF L2 

The weaknesses of L2 fall into two general categories: those resulting from the discrete 

Weaknesses of L2's discrete modeling formalism: 

modeling formalism of L2, and those resulting from particular design choices of the L2 engine. 

1. Continuous dynamics - must be abstracted into a discrete model, which is often 
difficult 

2. Transient periods - delays between the issuance of a command and the 
response of the system 



3. Generic components - not always possible to define components that can be 
used in more then one model 

4. Qualitative arithmetic - can be defined for L2 models but requires special 
consideration on the part of the modeler 

5. Gradual degradation - difficult to model 

Weaknesses of the L2 engine implementation: 

6. Diagnosis process not apparent to user - the logic supporting a diagnosis is not 
presented well 

7. Closed loops - situations that create casual loops in the model constraints, 
including physical loops in the system or control loops 

8. Autonomous nominal transitions - L2 depends on knowing the command 
sequence 

Some of these weaknesses were addressed in PITEX and more will be addressed by 
the next version of Livingstone, L3. These are all described in detail below. 

Continuous dvnamics 

The modeling challenge in L2 lies in creating a discrete abstraction of a system useful for 
diagnosis. E ' s  discrete modeling formalism, chosen for speed, makes it difficult to model 
continuous dynamics directly. All variables have discrete values, and the assigned values are 
logical functions of the system mode. Even time is treated as an integer value. L2 time is 
incremented when a system command is received -that is, it is an event-driven system. One 
increment of L2 time can correspond to any amount of real-world time. In such a framework, one 
cannot express any relationship that depends on real-world time, such as continuous differential 
equations. 

The difficulty in making the abstraction to a discrete model depends on the system. The 
MPS tanks are capacitive elements, governed by differential equations: the amount of propellant 
in the tank changes according to the balance of flow into the tank. PITEX formed the discrete 
abstraction by defining the state of the tank using the derivative of the pressure in the tank, and 
not the value of the pressure. The pressure derivative indicates if flow is coming into or out of the 
tank. This modeling abstraction is used to diagnose the modes of the input and output valves of 
the tank. 

The primary motivation for L3 is to address these issues. As well as discrete values, an 
L3 model will admit real-valued numbers, intervals, and ordinary differential equations. This will 
allow many more situations to be explicitly modeled, in a way that is more natural to engineers. 

Transient Deriods 

As an L2 model cannot be a function of time, it is difficult to model periods in which a 
system is transitioning between modes. Of course, real-world systems all take time to transition. 
During this time, the system observations may or may not have been updated. If a diagnosis is 
requested before the system has settled, L2 may wrongly indicate faults in the system. The 
traditional approach to this issue is to wait for a specified period of time to let the transition 
complete before requesting a diagnosis from the system. 

PITEX addressed this issue in the Real-Time Interface (RTI) module. This module is 
responsible for sending the commands and observations to L2, and requesting a diagnosis. 
Originally, the RTI followed the traditional approach: it would not allow a diagnosis to be done 
after receiving any command until after a specified amount of time has elapsed. However, on 
PITEX there were many cases where a second command would be sent within the settling time of 
the first command. In some cases, commands were sent rapidly enough that the scenario would 



be over before L2 could perform a diagnosis! The RTI was developed to better handle these 
cases. The final version contains a table associating commands to the corresponding 
observations; this is used to determine which observations will be transitioning after we issue a 
particular command. To do a diagnosis within the settling time of a command, the RTI removes 
the observations associated with that command from L2, and reassigns them back to L2 after the 
settling time is over. This allows L2 to diagnose other parts of the system while one part is 
transitioning. 

It is possible to define transient modes inside of an L2 model. This was investigated 
during the PITEX expansion period. With this approach, the model contains explicit transitional 
modes. These transitional modes contain few or no constraints. The RTI no longer keeps 
information relating the commands and observations: it passes on all observations and only 
tracks the settling time of each command. In effect, instead of making a more complex RTI which 
unassigns and re-assigns observations, we make a more complex model that suspends 
constraints in a transient period and reinstates them after it is over. The advantage of this 
approach is that the relationships between commands and observations are only specified in the 
model, and not repeated in the RTI. This makes the RTI less model-specific, and hence more 
reusable. The initial investigation of this method on PITEX was promising, and we will explore it 
in future work. 

Again, L3 will address this issue. Transient modes can be created if desired, and 
differential equations can be used in models for the transient modes. All information related to 
the transient, including the settling time, will be contained within the model. 

Generic comoonents 

A common goal in model-based methods is to define a set of components that could be 
reused in many different models. L2 models are capable of meeting this goal. However, they 
often encode system-specific behavior in order to achieve a better fault isolation ability. This is 
once again due to the discrete model representation of L2: the variable domains are defined in 
terms of the system characteristics relevant to diagnosis. 

line, pictured below in Figure 1. 
PITEX was no exception; the best example occurred in the L2 model of the pneumatics 
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Figure 1 L2 model fragment of the X-34 feedsystem pneumatics line 

This model fragment contains two pressure regulators in series, with no observations 
(pressure sensors) between them. Rg21 is the primary regulator, and rg02 is a backup regulator 
with a higher setpoint. Therefore, by design, if the continuous value from the pressure sensor 
mprel07p corresponds to rg02's setpoint, one can tell that rg21 specifically has failed. Mapping 
the sensor readings into the traditional discrete values {low, nominal, high} cannot fully isolate a 
fault to the rg21 component. For that reason, the pneumatics pressure variable, used throughout 
this line, was chosen to contain two ranges, one corresponding to rg21 and one corresponding to 
rg02. The regulator models contain constraints about these ranges, and will implicate rg21 as 
failed if mprel07p reads in the rg02 range. Hence, this regulator model is specific to the X-34 
system, and cannot be used in another model. 

Again as part of the PITEX extension work, we investigated how to make Livingstone 
component models more generic, without sacrificing diagnostic resolution. The L2 modeling 
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(+I 
Low 

Medium 

High 

language had recently been updated to add a feature similar to inheritance in C++ and Java. It 
allows a user to specify a base component with variables and constraints, and then extend that 
component and redefine the variables and constraints to be of specific types. In this manner, we 
were able to create generic base regulator models, and then extend them to create a PITEX 
regulator model for the model fragment in Figure 1. The resulting model still uses X-34 
information, but the constraints specific to the X-34 subsystem are separated from the constraints 
common to all pressure regulators. More importantly, there is no loss of diagnostic resolution. 

valued numbers will make it less necessary to define special-purpose variables. The extent to 
which this is true remains to be seen: there may always be situations that require special-purpose 
components. 

. 

This weakness in the L2 modeling representation will again be addressed by L3. Real- 

Low Medium High 

Low Medium High 

Medium Medium High 

High High High 

Given such a table, L2 will easily solve constraints involving the addition. However, the 
table contains many ambiguous elements. Should "medium" plus 'medium" equal "medium' or 
"high"? Should 'low" plus "medium" equal "medium" or "high'? Generating the table requires a 
modeler to make these decisions. Because of these concerns, leaks,' junctions, and other 
situations requiring arithmetic are often avoided in L2 models. 

arithmetic, and the situations described above can be modeled easily. 
L3 will directly address this issue. A real-valued constraint system automatically includes 

Gradual dearadation 

Degradation is an active area of research, often referred to as "parameter estimation'. 
Obviously, it is desirable to detect potential faults as early as possible, and if a component seems 
to be degrading, mitigating steps can be taken before the actual fault. However, L2 currently 
does not handle these issues. As it is concerned with transitions between discrete modes, 
usually a degraded component will be treated as nominal until it passes some threshold, then will 
be diagnosed as failed. 

Given a monitor capable of detecting degradation, the resulting information about 
degraded state could be merged into L2. The information could be treated as specialized 
observations that would put the system into special fault modes. PITEX had developed a valve 
timer monitor, to measure the time response of the simulated valves. If the time required to open 
and close the valve begins to increase, it is often an indication of incipient failure. However, due 
to time limitations, PITEX did not incorporate that information into the L2 models. 

. 



Diaanosis Drocess not amarent to user 

This is a weakness of the L2 engine. In model-based systems, the diagnosis process is 
not defined in advance. However, they are able to provide information on the diagnosis process 
as it progresses. L2 does contain some features to query the chain of reasoning leading to 
particular variable assignments, but they were created to support the developers of L2 rather than 
to provide insight to the users. 

L3 plans to address this concern by adding additional support for tracing the diagnosis 
process. The complete path from observations to the resulting diagnosis will be available to a 
user. 

a 

Closed IOODS 

Closed loops, in this context, refer to sets of constraints with causal loops. These can be 
created in several modeling situations: general pipe networks will often contain loops, and 
controllers create feedback loops. 

Internally, L2 uses a unit propagation algorithm to determine if the current modes and 
observations are consistent. However, unit propagation is not complete: it will not always be 
able to determine values for variables, even when enough information exists to do so. Having 
causal loops in a model is a common case that can cause this. A complete propagation 
algorithm, such as Davis-Putnam-Logeman-Loveland (DPLL), is always able to determine values 
for variables, if it is possible to do so. The first physical systems modeled in Livingstone did not 
contain loops, and unit propagation was chosen for simplicity [3]. 

A complete propagation algorithm could be implemented into L2 to overcome this 
weakness; however, there are no current plans to do so. L3 does plan to implement DPLL, or its 
equivalent, and will overcome this weakness. 

Autonomous nominal transitions 

L2 makes the assumption that all nominal mode transitions will be the result of a visible 
system command. However, this is not true for all systems. A mechanical vent relief valve, 
which automatically opens when the pressure is above a threshold, falls into this category. This 
assumption was made on the basis of speed and simplicity. With this assumption, L2 only needs 
to check a single transition against the current observations to infer that the system has executed 
a command nominally. Without this assumption, L2 would need to check all allowable nominal 
transitions against the current observations. This would result in greater computational 
requirements of L2, even when no faults have occurred. It also admits the possibility of having 
multiple system states that would need to be tracked in the nominal case. 

The MPS model contained a solenoid valve whose commands were not in the telemetry 
available to L2. This situation was handled by not giving the valve separate "open" and "closed" 
modes, but one "nominal" mode where the valve position is allowed to be open or closed. L2 can 
infer the value of the valve position variable, but will not be able to diagnose specific faults, such 
as "stuck open", in the valve. 

The guards on the transitions will help avoid the expansion of possible transitions and additional 
computation time. 

The modeling formalism chosen for L3 will explicitly allow hidden nominal transitions. 



SUMMARY AND CONCLUSIONS 

L2 is a good candidate for providing system monitoring and diagnosis. However, PITEX 
did find several weaknesses of L2, both in the discrete modeling representation and in the L2 
implementation. Potential users should evaluate these strengths and weaknesses according to 
the needs of their particular application. 

In order to address the current limitations of modeling in L2, researchers at NASA Ames 
are working on both the modeling methods and on the capabilities of the inference engine. For 
instance, we are exploring the use of generic component models, to promote model reuse. 
Researchers are also working on designing L3, which can use a richer language to express the 
model, ranging from interval constraints to differential equations, as well as many improvements 
to the core engine. 
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